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ABSTRACT

This paper addresses the problem of inverse dynamics for articulated
flexible structures with both lumped and distributed actuators. This problem

arises, for example, in the combined vibration minimization and trajectory con-
trol of space robots and structures. A new inverse dynamics scheme for com-
puting the nominal lumped and distributed inputs for tracking a prescribed tra-
jectory is given.

1. Introduction "

Inverse dynamics is an important problem in the control of articulated flexible structures
such as space stations and manipulators. A solution for the nonredundant lumped actuator case
has been provided by Bayo et. al., [1] and Book, [2]. This method produces bounded inputs
which move a reference point on the structure along a desired trajectory. The inputs are neces-
sarily non-causal when the structure dynamics are nonminimum phase. Elastic deformation
which may cause vibration of the structure is also determined by the trajectory; our goal is to
minimize such vibrations. The viability of distributed actuators for the control of structural

vibrations, [3], [4] and [5], has motivated their use here for trajectory tracking.

Trajectory tracking of the structure can be accomplished by the use of the joint actuators
alone [6] and in this sense the distributed actuators are redundant. We introduce the concept of
using the extra actuation available through the distributed actuators in the structure to not only
satisfy the trajectory tracking constraint but also minimize the accompanying elastic displace-
ments during the motion. To obtain these new feedforward inputs, the inverse dynamics
method suggested in [1] is extended to cover cases of redundantly-actuated structures. This use
of distributed actuators in feedforward for end effector trajectory control is contrasted with the

use of only the joint actuators in feedforward in an example of a flexible two link truss struc-
ture with distributed piezo-electric actuators to verify the efficacy of the proposed method.

The remainder of the paper is organized in the following format. The modeling of flexi-
ble structures with joint and distributed actuators, the formulation of the problem and its solu-
tion are presented in Section 2. Section 3 deals with an application of the proposed method to
the example of a two link flexible truss. The discussions and conclusions are presented in sec-
tion 4.
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2. Formulation

The solution to the general multi-link inverse dynamics problem involves studying an
individual link in the chain, coupling the equations Of the individual links, and then recursively
converging to the desired actuator inputs and corresponding displacements. This approach is

presented below, beginning with a single link.

2.1 Equation of motion of a single link

To simplify the equations, we present the equations for a link with a revolute joint. The
flexible link depicted in figure 1 forms part of a multi-link system. The link is shown with a
revolute joint, however the formulation remains identical for a link with translational joint. The
elastic deflections in the structure are defined With respect to a nominal position characterized

by a moving frame whose origin coincides with the location of the hub of the link. The nomi-
nal motion of this frame is prespecified by its angular velocity [oh , angular acceleration txh and
the translational motion of its origin. The above definition of the elastic displacements with

respect to this nominal frame permits the linearization of the problem from the outset. Incor-
porating the kinematic model followed by Naganathan and Soni [7] in a finite element model
(FEM), the equations of motion for a single link at any time t can be written as [1]

Where z is an R n vector of the finite element degrees of freedom. M and K belong to R n×n
and are the conventional finite element mass and stiffness matrices respectively; Cc and

K c e R "_ and are the time varying Coriolis and centrifugal stiffness matrices, respectively.
The R nxn matrix C represents the internal viscous damping of the material. T is the unknown
joint actuation. F e R _ contains the reactions at the end of the link, and the known forces
produced by the rotating frame effect. The distributed actuator inputs at time t are The
equivalent nodal forces at the FEM degrees of freedom due to the distributed actuators are

represented by Vp, a R'W vector, where np is the number of distributed actuator inputs. B r and
Bp are constant matrices of dimensions R n and R nxnp, respectively. The set of finite element
equations (2.1) may be partitioned as follows

.. . I _h

.. . Zt

z t 7,t

7-+ IBm,/v + /F, (22>

where Oh is the elastic rotation of the hub, zt is the elastic deflection at the tip in the y direc-
tion, and the other n-2 finite element degrees of freedom are included in the vector z;. The
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forcevector,F, and the Bp and B r matrices are also partitioned similarly.

2.2 Minimization Objective

The requirement is to accurately track the end effector of the link along the given nomi-
nal trajectory without overshoot and residual vibrations. Additionally we also seek to minimize
the ensuing structural vibrations during this motion by minimizing J(T,Vp), a measure of elas-
tic deflections in the Structure defined as follows

J(T,Vp) = _ z(t)rz(t)dt. (2.3)

Mathematically the objective can be stated as

rain . J (T,Vp). (2.4)
(T,Vp) _ T

Where 7_ is the set of all pairs of stable joint torque and distributed actuator inputs that when

used to actuate the system defined by equation (2.2) yields zt(t) = 0 for all t.

2.3 Solution Methodology

An iterative scheme is described below for each link. Equation (2.2) can be rewritten as

Mz" + Cz + Kz= BTT+ BpVt, + F - Cc(o) h) z - Kc([Xh,O) h) 7. (2.5)

where the time dependent Coriolis and centrifugal terms are kept on the RHS of the equation.
The iteration procedure starts with the absence of the last two terms involving Cc and Kc in

the right hand side. Then, the system of equations can be transformed into independent sets of
simultaneous complex equations by means of the Fourier transform. For each of the evaluation

frequency _, equation (2.5) becomes

..

Zh

+1__.c_
i 65 _2 zi

zt
Pt

(2.6)

where the bar stands for the Fourier transform, and F represents the known forcing terms.
After the first iteration it will also include the updated contributions from the Coriolis and cen-

trifugal terms appearing in the RHS of equation (2.5). For any _5 _ 0, the matrix

[M ---L-1K] (2.7)
H = +--_-1 C -

i_ fi52

is a complex, symmetric and invertible matrix. For ii5 = 0 the system undergoes a rigid body
motion and H = M which is the positive definite invertible mass matrix. Let G = H -1. Then
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theaboveequationcanbere-writtenas
°.

gh
lip

_ IGhh Ghi Gh_

J_i = ] Gih Gii Git

.7- L Gth Gti Gtt

"Zt .

+ + IB,, (2.8)

The condition that the tip should follow the nominal motion is equivalent to zt = 0 for all flY.
This induces a relationship between the joint actuation and the distributed actuator inputs and is
obtained from the last row of the previous equation.

T =-G,h-I[G,hG,iGu](F+Bt, VZ). (2.9)

Substituting this expression for the input hub torque in equation (2.8) and using the property

that _ = -fly2Tzyields
dt 2

_1...!.. (AVT+B) (2.10)
F = fly2

Wqle re

and

A = [-.Gth -1 GBT(Gth ati Gtt ) + G] Bp (2.11)

B = [-Gth -1 GBT(Gth Ga Gtt) + G ] ff . (2.12)

Next we determine Vj,. Using Parseval's theorem, minimizing J(T,Vp) in equation (2.4) is
equivalent to minimizing IIz--Ilffat each _. This is a standard least squares approximation prob-

lem [8] and results in the following solution for the distributed actuator inputs,

vp = -v v" B (2.13)

where E, U and V define the standard singular value decomposition of A as follows

{oo?
Where the conjugate iranspose matrix operator is =denotedby *. In addition _f ,4 has rank rip,
which is the number of distributed actuator inputs, then the least squares approximation yields

_'p = -(A" A )-iA* B . (2.15)
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A sufficientandnecessaryconditionfor A to have rank np is given next.

Lemma

rank [A ] = np ifandonlyif rank [BTllBp] = np+l (2.16)

Proof

Rank [BT] = 1 => rank _GBr(G,h Gii Gu)] = 1

=>rank L_ = [-Gth-' GBr(Gth Ga Gn) + G]] k n-l.

SinceB r = [I 0 0]*, it is easy to see that the null space of,4 is the span of [I 0 0]*. Hence
rank A is n-1. Noting that A = A_ Bp, the lemma follows easily. El

The above lemma requires that all the columns of the input matrices BT and Bp be indepen-

dent. This is computationally more efficient than checking the rank of A for each _. Next, the
corresponding joint torque component, T is then evaluated from equation (2.9). The inverse
Fourier transforms for the feedforward inputs completes the first iteration and results in

torques, T 1 and distributed inputs V_. Then the forward dynamic analysis is carried out to

compute Kc and Co. F in the RHS of equation (2.5) is updated and the process is repeated to
find the new input torques and voltagesl The process is stopped at the n th iteration if

IIT_-Tn-lll 2 + IlVp"-Vp"-IIIz < 8, where _: is some small positive constant. It may be noted that
for slow motions the terms involving Kc and Cc are small relative to the other terms in equa-

tion (2.1) and the iterations converge in a few steps [1 ].

2.4 The Algorithms for the Multi-Link Cases

In the previous sub-section the procedure to evaluate the joint actuations of a single link
was presented. This can be recursively extended for multi-link flexible manipulators. Algo-
rithms are presented below for both open and closed chain multi-link mechanisms. These are
similar to those proposed by Bayo et. ai. [1].

Multi-Link Open Chain Case

1. Define the nominal motion (Inverse Kinematics of rigid manipulator).

2. For each link j, starting from the last one in the chain:
a) Compute torque (or force) T j and distributed actuator inputs P_Y

imposing z/-- 0 (Section 2).
b) Compute the link reaction forces R -/ from equilibrium.

3. Use equation (2.1) to compute the elastic displacement and joint angles.

4. Compute the inputs for the next link, j-1.

Multi-Link Closed Chain Case

1. Define the nominal motion (Inverse Kinematics of rigid robot).

2. Define an independent set of joint forces and reactions equal in number to the degrees of
freedom of the robot.

3. For each link j, starting from the last one in the chain:
a) Compute torque (or force) T -/ and distributed actuator

inputs P_ imposing z/= 0 (Section 2).
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b)Computethelink reactionforcesR j from equilibrium.

4. Use equation (2.1) to compute the elastic displacements and joint angles

5. Use elastic deflections to correct the nominal motion of each link.

6. Repeat steps 3 to 5 until convergence in the forces/torques is obtained.

This concludes the methodology. In the next section we present an application to a two-
link flexible manipulator.

3. Example

A twolink truss experiment under development at UCSB is shown in figure 2. The trusses
are made of lexan and have lumped masses (net 2 Kg for each link) distributed along their
lengths. The first and the second links are tip loaded with 3.5 and 1 Kg respectively.
Equivalent beam properties of the trusses used in the FEM model for simulations are Youngs
modulus = 7 e 9 GPa, Link length = 1.2 m, density = 1500 Kg/m 3, cross sectional area =
4.378 e -5 m 2 and cross sectional area moment of inertia = 4.7244 e -9 m 4. Of the 10 spans in

each link, two are piezo-electricaUy actuated. They are located at the second and ninth spans as
shown in the figure 2. The piezo-electric stack actuators in those spans have the following pro-
perties. Cross sectional area, Acs = 7.3 e -6 rn2, piezo strain to voltage constant, ds_ = .731

e -6 V -t, Youngs modulus, Ep = 73 e 9 Gpa and distance of the actuator from the neutral axis
of the truss, dt= 1.27 e -2 m. Following the standard Bemoulli-Euler modeling for an applied

voltage Vinput, the piezo-electric actuation can be considered as two concentrated moments M
acting at the two ends of the actuator [9] and [10]. Where M is given by

M = (asv NpEt, Acsdt)Vinp_, (3.1)

and Np =4 is the number Of piezos in each span. For the truss considered above
M = = 0.0198Vi,,p,,. The desired trajectory is a rest to rest motion of the structure with initial
conditions given by 01 = 0z = 0 and final conditions 01 = 11.25 ° and 02 = -22.5 ° • O's are
the absolute angles of the links with respect to a frame fixed on the ground and are shown
in figure 2. The nominal motion of the tip for each link are the trajectories followed by the tips

of the links if the structure were rigid and followed the nominal angular motions shown in
figure 3. Using the procedure in section 2.4 for open:chain mechanisms, open loop simulations
were performed (1) using only the joint actuation for feedforward and (2) using the distributed
piezo-electric actuators along with joint actuators in feedforward and the results are presented
below.

Plots of the input piezo Voltages and joint torques are presented in figures 4 and 5 respectively.
To illustrate the viability of the proposed method figures 6 and 7 show the transverse structural
midpoint deflections of the two links during the motion with and without the distributed actua-
tors. Similar plots for the elastic hub rotations are shown in figures 8 and 9.

Thus the piezo-electric actuators show a significant reduction in the structural vibrations and
demonstrate the viability of the proposed method. The consequent reduction in the induced
strains in the structure allows the use of lighter elements and smaller actuators, especially in
space structures where the loads are mainly inertial.
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4. Conclusion

Typically distributed actuators like the piezo-electric ones cannot gamer enough actuation
to cause large motions in the structure. However they could be very effective in controlling the
small structural deformations in the structure. Their use in the feedforward to aid the joint

actuators for trajectory tracking is a novel idea developed in this paper. The method proposed
was shown to be extremely efficient in removing structural vibrations from structures as seen
in the example. Thus these feedforward actuations, obtained through the proposed inverse
dynamics, augmented with joint angle feedback based closed loop controllers seem promising
in the slewing control of flexible manipulators. This encouraging result motivates further work
on distributed actuators in the control of flexible structures.

ACKNOWLEDGEMENT

Support from Air Force Office of Scientific Research through grant F49620-91-C-0095,
the Astro Aerospace Corporation and TRW are gratefully acknowledged.

References

1. E. Bayo, M.A. Serna, P. Papadopoulos, and J. Stubbe, "Inverse Dynamics and
Kinematics of Multi-Link Elastic Robots. An Iterative Frequency Domain Approach,"

The International J. of Robotics Research, vol. 8, No 6, Dec 1989.

2. D. Kwon. and W.J. Book, "An inverse dynamic method yielding flexible manipulator

state trajectories," Proc. of ACC, pp. 186-193, 1990.

3. Fanson, J. L. and Garba, J. A., "Experimental Studies of Active members in Control of

Large Space Structures," Proc. AIAA 29th SDM Conf., pp. 9-17, 1988.

4. L. Meirovitch and H. Baruh, "Control of Self-Adjoint Distributed-Parameter Systems,"

AIAA, vol. 5, No 1, pp. 60-66, 1980.

5. M.J. Balas, "Active Control of Flexible Systems," Journal of Optimization Theory and

Applications, vol. 25, No 3, pp. 415-436, 1978.

6. B. Paden, D. Chen, R. Ledesma, and E. Bayo, "Exponentially Stable Tracking Control
for Multi-Joint Flexible-Link Manipulators," ASME J. of Dynamic Systems, Measurement

and Control, vol. accepted for publication.

7. G. Naganathan and A.H. Soni, "Coupling Effects of Kinematics and Flexibility in Mani-
pulators," International Journal of Robotics Research, vol. 6, No 1, pp. 75-85, 1987.

8. G.W. Stewart, Introduction to Matrix Computations, pp. 319-325, Academic Press, Inc.,
1973.

9. E.F. Crawley and E.H. Anderson, "Detailed Models of Piezoceramic Actuation of
Beams," J. of Intelligent Material Systems and Structures, vol. 1, pp. 4-24, 1990.

10. S. Devasia, "Modeling of Piezo Electric Actuators," M.S. Thesis, UCSB, 1990.

97



Y

..... 0., ,_X
............... M_

_,eh

Figure I.A SingleFlexibleLink

98



Rir Bearin(

Plezo

Actuators

Elbow

Motor

Link- I _ L ink- 2----_

Base Motor

Fixed Frame

Air Bearing

Figure 2. The Two Link Truss Structure

99



v

0

0

0
Z

0.4

0.3

Link-2 i

-_--

1 2 3

Time (s)

Fig.3: nominal angular positions

100



v

5q

o

_L

o
b_

O.

I000

500

0

-500

-1000

-0

l , ) , i

1 2 3

Time (s)

Fig.4: input piezo voltages
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Fig.5: inverse dynamics torques
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Fig.6: transverse deflection at midpoint of link 1

E

O4
1

_-a

°4

0

o

0

1.0

0.5

0.0

-0.5

..... _,_ , I .......... L ....

1 2 3

Time (s)
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